A FEW REMARKS ON ROWBOTTOM CARDINALS

BY JAN TRYBA

ABSTRACT

It is proved that every regular Rowbottom cardinal which is greater than the continuum is strongly inaccessible. We notice that the theory "ZFC+every cardinal of cofinality ω is Rowbottom" is inconsistent. This answers a question raised by C. C. Chang and H. J. Keisler.

1. Introduction

A cardinal $\kappa > \omega_1$ is called a Rowbottom cardinal if, whenever $\mathfrak{A} = \langle A, Q, \cdots \rangle$ is a structure of countable length with $|A| = \kappa$, $Q \subset A$ and $|Q| < \kappa$, then \mathfrak{A} has an elementary substructure $\mathfrak{B} = \langle B, Q \cap B, \cdots \rangle$ with $|B| = \kappa$ and $|Q \cap B| \leq \omega$. Even without the axiom of choice this model theoretic definition is equivalent to the well-known combinatorial one [2]: $\kappa > \omega_1$ is Rowbottom iff for any $f: [\kappa]^{<\omega} \to \lambda$, where $\lambda < \kappa$, there exists a set $X \subseteq \kappa$ such that $|X| = \kappa$ and $|f''[X]^{<\omega}| \leq \omega$. It is also well known that if κ is a Rowbottom cardinal, then either κ is weakly inaccessible or cf $\kappa = \omega$.

The purpose of this paper is, using ideas of K. Prikry [3], to establish that a regular Rowbottom cardinal $\kappa > 2^{\omega}$ is strongly inaccessible. We indicate also some cardinals of cofinality ω which are not Rowbottom. This answers a question raised in [1].

Our notation is standard, but we do mention the following: the letters κ , λ always denote infinite cardinals. If x is a set, |x| is its cardinality and $[x]^{<\omega}$ is the set of all finite subsets of x. If f is a function, then f''x is the image of x under f and $f \mid x$ is the restriction of f to x. f denotes the set of all functions from f into f is the collection of all sets of rank less than f.

In this paper all undefined set theoretical notions are taken from [2]. Many thanks are due to Prof. Menachem Magidor for his hint at Theorem 2.

Received November 24, 1980 and in revised form January 7, 1981

2. Basic lemmas

Let us recall that two functions f, g on λ are almost disjoint if there is $\gamma < \lambda$ such that $f(\alpha) \neq g(\alpha)$ for all $\alpha \ge \gamma$.

The main theorem of this paper is based on the following

LEMMA 1. Let k be a Rowbottom cardinal. Then

- (i) Every family F of almost disjoint functions $f: \lambda \to \nu$, where $\nu, < \kappa$ and cf $\lambda > \omega$, has less than κ elements.
- (ii) Every family F of almost disjoint functions $f: \lambda \to \kappa$, where $\lambda < \kappa$ and cf $\lambda > \omega$, has at most κ members unless κ is singular.
 - PROOF. (i) Suppose, towards a contradiction, that $|F| \ge \kappa$.

Let us define the partition $P:[F]^2\to\lambda$ by $P(\{f,g\})=\text{least }\gamma$ such that $f(\alpha)\neq g(\alpha)$ for all $\alpha\geq \gamma$. By the combinatorial property of κ , there exists a subfamily $G\subseteq F$ of size κ such that the image $P''[G]^2$ is at most countable. We put $\eta=\sup P''[G]^2$. As cf $\lambda>\omega$, we have $\eta<\lambda$. But then $f(\eta)\neq g(\eta)$ whenever $f,g\in G$, which is absurd since $|G|=\kappa$ and $f(\eta)<\nu$ for all $f\in G$.

(ii) If $|F| > \kappa$ then choose a subfamily $H \subset F$ and an ordinal $\nu < \kappa$ so that $|H| = \kappa$ and $f \in {}^{\lambda}\nu$ for all $f \in H$ (because every function $f : \lambda \to \kappa$ is bounded) and apply (i) to get a contradiction.

We obtain an interesting and useful result by using a kind of device of F. Rowbottom.

LEMMA 2. If $\kappa > 2^{\omega}$ is a Rowbottom cardinal then $\lambda^{\omega} < \kappa$ for all $\lambda < \kappa$.

PROOF. It suffices to show the following combinatorial claim: whenever $f: [\kappa]^{<\omega} \to \lambda^{\omega}$ where $\lambda < \kappa$, there exists a subset $X \subseteq \kappa$ such that $|X| = \kappa$ and $|f''[X]^{<\omega}| \le \omega$.

So let $f: [\kappa]^{<\omega} \to {}^{\omega}\lambda$ and $\lambda < \kappa$. Define $g: [\kappa]^{<\omega} \to \lambda$ as follows: Suppose $x_1 < \cdots < x_n$ in κ , $n \ge 1$ and $n = 2^i(2j+1)$; then $g(\{x_1, \dots, x_n\}) = f(\{x_1, \dots, x_i\})(j)$.

Now by the combinatorial characterization of κ we find a subset $Y \subseteq \kappa$ of size κ such that the image A of $[Y]^{<\omega}$ under g is at most countable. It is easy to notice that $f''[Y]^{<\omega}$ is included in ${}^{\omega}A$. Since $2^{\omega} < \kappa$ it follows immediately from the definition of κ used once more that there is an $X \subseteq Y$ which has the desired properties.

3. Main propositions

THEOREM 1. (i) If $\kappa > 2^{\omega}$ is a regular Rowbottom cardinal then $2^{\lambda} < \kappa$ for all $\lambda < \kappa$.

- (ii) If 2^{ω} is Rowbottom then $2^{\lambda} = 2^{\omega}$ for all $\lambda < 2^{\omega}$.
- PROOF. (i) Argue by contradiction. Assume that $\lambda < \kappa$ is the least cardinal such that $2^{\lambda} \ge \kappa$. Clearly, $\lambda > \omega$.

At first we wish to show cf $\lambda > \omega$. Suppose not. Our assumption is that $\lambda = \sum_{n < \omega} \lambda_n$ for some increasing sequence $\langle \lambda_n : n < \omega \rangle$ of cardinals. Therefore $2^{\lambda} = \prod_{n < \omega} 2^{\lambda_n} = (\sup_{n < \omega} 2^{\lambda_n})^{\omega}$ and $\kappa = \sup_{n < \omega} 2^{\lambda_n}$ by Lemma 2. But this is absurd unless cf $\kappa = \omega$.

At present we assign for each $f \in {}^{\lambda}2$ the sequence $\bar{f} = \langle f \mid \alpha : \alpha < \lambda \rangle$. The collection $\{\bar{f}: f \in {}^{\lambda}2\}$ yields a family F of 2^{λ} almost disjoint functions from λ into a set of cardinal less than κ . However, following Lemma 1 the family F must have less than κ elements. Having arrived at this contradiction we have thus established (i).

(ii) Now we get (ii) by simple suitable repetition of the previous proof and an application of Lemma 1 (ii).

REMARK. From the above proof we obtain that if $\kappa > 2^{\omega}$ is a Rowbottom cardinal, then either κ is a strong limit or cf $\kappa = \omega$ and there exists $\lambda < \kappa$ of cofinality ω such that $2^{<\lambda} = \kappa$ and $2^{\lambda} = \kappa^{\omega}$. In particular, if $2^{\omega} < \omega_{\omega}$ and ω_{ω} is Rowbottom then $2^{\omega_n} < \omega_{\omega}$ for all $n < \omega$.

Following a remark of M. Magidor let me state the following

THEOREM 2. Let κ be a Rowbottom cardinal. If $\varphi(x)$ is any property which can be expressed by a downward absolute formula which is absolute between V and V_{κ} such that $\varphi(\alpha)$ holds in V for some uncountable $\alpha < \kappa$, then the set $A = \{\beta < \kappa : \varphi(\beta)\}$ is unbounded in κ and either $|A| = \kappa$ or $|A| = \omega$.

PROOF. We shall only show that the set A is unbounded in κ . The method of the proof is suitable to receive the second part.

We suppose the opposite and derive a contradiction. Let $\eta = \sup A$. Our assumption means that $\eta < \kappa$.

We start with the structure $\langle V_{\kappa}, \in \rangle$. In case of need we apply the downward Lowenheim-Skolem theorem to get its elementary substructure \mathfrak{A} of size κ such that the universe B of \mathfrak{A} contains κ .

Consider the structure $\mathfrak{B} = \langle B, \in, \eta, g, \eta \rangle$ which has the distinguished unary relation η , the one-to-one function $g: B \to \kappa$ and the individual constant η . By the model theoretic property of κ we find an elementary substructure $\mathfrak{C} = \langle C, \in, \eta \cap C, g \mid C, \eta \rangle$ of \mathfrak{B} with $|C| = \kappa$ and $|\eta \cap C| = \omega$.

Now © is a well-founded model of the axiom of extensionality and so by

Mostowski's isomorphism theorem we have the unique collapsing isomorphism π taking $\mathfrak C$ to a transitive structure

$$\mathfrak{M} = \langle M, \in, \pi''(\eta \cap C), \pi \circ g \mid C \circ \pi^{-1}, \pi(\eta) \rangle.$$

Put $\gamma = \pi(\eta)$. It is not difficult to see that $\pi''(\eta \cap C) = \gamma$ and so $\gamma < \omega_1$. It is also easy to prove with the use of g that $\pi''(\kappa \cap C) = \kappa$. Thus $\kappa \subseteq M$.

Finally, each ordinal $\beta < \kappa$ such that $\varphi(\beta)$ holds in \mathfrak{M} is not greater than γ . Nevertheless $\alpha \in M$ and $\varphi(\alpha)$ holds in \mathfrak{M} because the property φ is described by a downward absolute formula, contradicting $\gamma < \omega_1$.

COROLLARY 1. (i) If $\kappa > \omega_{\omega}$ is a Rowbottom cardinal then κ is the limit of the sequence of all limit cardinals less than κ . In particular, $\omega_{\omega+\omega}$ is not Rowbottom.

- (ii) If $\kappa > \omega_{\omega_1}$ is a Rowbottom cardinal then κ is a fixed point of the aleph function.
- (iii) The theory "ZFC+ every cardinal of cofinality ω is Rowbottom" is not consistent.

COROLLARY 2. (i) If $\kappa \ge 2\omega$ is a Rowbottom cardinal then κ is a strong limit.

(ii) If $\kappa > 2_{\omega_1}$ is a Rowbottom cardinal then κ is a fixed point of the beth function.

COROLLARY 3. If κ is a Rowbottom cardinal greater than the first inaccessible then κ is the limit of the sequence of all inaccessible cardinals less than κ . In particular, if κ is regular then κ is the κ th inaccessible cardinal.

Similarly, if κ is a regular Rowbottom cardinal greater than the first Mahlo then κ is the κ th Mahlo cardinal, etc.

REFERENCES

- 1. C. C. Chang and H. J. Keisler, Model Theory, North-Holland Publ. Co., Amsterdam, 1973.
- 2. F. R. Drake, Set Theory, North-Holland Publ. Co., Amsterdam, 1974.
- 3. K. Prikry, Ideal and powers of cardinals, Bull. Amer. Math. Soc. 81 (1975), 907-909.

DEPARTMENT OF MATHEMATICS GDANSK UNIVERSITY WITA STWOSZA 57 80952 GDANSK, POLAND